7.15 practical applications
PRACTICAL APPLICATIONS
1. Pendahuluan[Back]
Rangkaian elektronika adalah kumpulan komponen elektronik yang terhubung satu sama lain untuk melakukan fungsi tertentu. Practical applications merupakan aplikasi dari rangkaian elektronika yang mempengaruhi banyak aspek kehidupan komunikasi, komputasi dan industri serta kesehatan.
2. Tujuan[Back]
- Dapat menggunakan aplikasi proteus untuk membuat rangkaian listrik sederhana
- Dapat menggunakan komponen-komponen sederhana dalam membuat rangkaian pada aplikasi proteus
- Dapat memahami rangkaian yang dibuat pada aplikasi Proteus
3. Alat dan Bahan[Back]
ALAT :
BAHAN :
- Grounding
Berfungsi sebagai penahan arus
- Dioda
Berfungsi mengubah gelombang arus bolak balik Menjadi gelombang searah.
- Resistor
Berfungsi sebagai hambatan arus listrik.
- Baterai/Sumber Tegangan
- Transistor
Transistor adalah sebuah komponen elektronika yang digunakan untuk penguat, sebagai sirkuit pemutus, sebagai penyambung, sebagai stabilitas tegangan, modulasi sinyal dan lain-lain.
4. Dasar Teori[Back]
Aplikasi yang dijelaskan di sini mengambil keuntungan penuh dari impedansi input transistor efek medan yang tinggi, isolasi yang ada antara gerbang dan sirkuit pembuangan, dan linear wilayah karakteristik JFET yang memungkinkan mendekati perangkat dengan elemen resistif antara terminal drain dan source. Salah satu aplikasi JFET yang paling umum adalah sebagai resistor variabel yang nilai resistansinya dikendalikan oleh tegangan dc yang diberikan pada terminal gerbang. Pada Gambar 7.63a, wilayah linier transistor JFET telah ditunjukkan dengan jelas. Pada Gambar 7.63b, daerah linier telah diperluas ke tegangan drain-to-source maksimum sekitar 0,5 V. Perhatikan bahwa meskipun kurva memang memiliki beberapa kelengkungan, mereka bisa mudah didekati dengan garis yang cukup lurus, semuanya berasal dari persimpangan sumbu dan kemiringan ditentukan oleh tegangan dc gerbang-ke-sumber. Ingat dari diskusi sebelumnya bahwa untuk plot I–V di mana arus adalah sumbu vertikal dan tegangan adalah sumbu horizontal, semakin curam kemiringannya, semakin kecil hambatannya; dan lebih horizontal kurva, semakin besar hambatannya. Hasilnya adalah garis vertikal memiliki resistansi 0 Ω dan garis horizontal memiliki resistensi tak terbatas. Pada VGS = 0 V, kemiringannya paling curam dan resistensi paling sedikit. Ketika tegangan gerbang-ke-sumber menjadi semakin negatif, kemiringan menurun sampai hampir horizontal di dekat tegangan pinch-off. Dengan menggunakan hukum Ohm, mari kita hitung hambatan yang terkait dengan setiap kurva pada Gambar 7.63b menggunakan arus yang menghasilkan tegangan drain-to-source sebesar 0,4 V.
Secara khusus, perhatikan bagaimana resistansi saluran ke sumber meningkat saat gerbang ke sumber tegangan mendekati nilai pinch-off. Hasil yang baru saja diperoleh dapat diverifikasi oleh Persamaan. (6.1) menggunakan tegangan pinch-off -3 V dan Ro = 100 pada VGS = 0 V.
meskipun hasilnya tidak sama persis, untuk sebagian besar aplikasi disediakan Persamaan (6.1).
perkiraan yang sangat baik untuk tingkat resistensi aktual untuk RDS. Perlu diingat bahwa kemungkinan level V GS antara 0 V dan pinch-off tidak terbatas, menghasilkan kisaran penuh nilai resistor antara 100 Æ dan 3,3 kÆ. Oleh karena itu, secara umum pembahasan di atas dirangkum oleh Gambar 7.64a. Untuk VGS = 0 V, kesetaraan dari Gambar 7.64b akan menghasilkan; untuk VGS = -1,5 V, persamaan dari Gambar 7.64c ; dan seterusnya
sekarang mari kita selidiki penggunaan resistansi drain yang dikontrol tegangan ini dalam penguat nonin verting pada Gambar 7.65a — noninverting menunjukkan bahwa sinyal input dan output berada dalam fase. Op-amp pada Gambar 7.65a dibahas secara rinci pada Bab 10 , dan persamaannya untuk keuntungan diturunkan di Bagian 10.4. Jika Rf = R1, gain yang dihasilkan adalah 2, seperti yang ditunjukkan oleh sinyal sinusoidal dalam fase dari Gambar. 7.65a . Pada Gambar 7.65b, resistor variabel telah diganti dengan JFET n-channel.
Jika Rf = 3,3 k dan transistor pada Gambar 7.63 digunakan, gain dapat diperpanjang dari 1 + 3,3 k >3,3 k = 2 hingga 1 + 3,3 k >100 = 34 untuk V GS bervariasi dari -2,5 V hingga 0 V, masing-masing. Oleh karena itu, secara umum, penguatan penguat dapat diatur pada nilai berapa pun antara 2 dan 34 dengan hanya mengontrol tegangan biasing dc yang diterapkan. Efek dari ini jenis kontrol dapat diperluas ke berbagai macam aplikasi. Misalnya, jika tegangan baterai radio harus mulai turun karena penggunaan yang lama, tingkat dc di gerbang pengendalian JFET akan turun, dan level RDS juga akan turun. Penurunan RDS akan menghasilkan peningkatan penguatan untuk nilai R f yang sama, dan volume keluaran radio dapat dipertahankan.
Salah satu faktor terpenting yang mempengaruhi stabilitas sistem adalah variasi temperatur. Saat sistem memanas, kecenderungan yang biasa adalah keuntungan meningkat, yang mana digilirannya biasanya akan menyebabkan pemanasan tambahan dan pada akhirnya dapat mengakibatkan kondisi dimaksud sebagai "pelarian termal." Melalui desain yang tepat, termistor dapat diperkenalkan sesuai keinginan mempengaruhi tingkat bias dari resistor JFET variabel yang dikontrol tegangan. Sebagai perlawanan dari thermistor turun dengan peningkatan panas, kontrol bias JFET bisa seperti itu bahwa resistansi pengurasan berubah dalam desain amplifier untuk mengurangi penguatan pembentukan efek penyeimbang. Untuk noninverting amplifier, salah satu keuntungan terpenting terkait dengan menggunakan JFET untuk kontrol adalah fakta bahwa itu adalah dc daripada kontrol ac. Untuk kebanyakan sistem, kontrol dc tidak hanya menghasilkan pengurangan kemungkinan penambahan derau yang tidak diinginkan ke sistem, tetapi juga juga cocok untuk remote control. Misalnya, pada Gambar 7.66a , panel kendali jarak jauh mengontrol gain amplifier untuk speaker dengan saluran ac yang terhubung ke variabel resistor.
Timer Network Isolasi yang tinggi antara rangkaian gerbang dan saluran pembuangan memungkinkan desain pengatur waktu yang relatif sederhana seperti yang ditunjukkan pada Gambar 7.67. Sakelar adalah sakelar yang biasanya terbuka (NO), yang ketika ditutup, akan membuat kapasitor menjadi pendek dan menyebabkan tegangan terminalnya turun dengan cepat ke 0 V. Jaringan switching dapat menangani pelepasan tegangan yang cepat melintasi kapasitor
Sistem Fiber Optik
Pengenalan teknologi fiber optik memiliki efek signifikan pada industri komunikasi. Kapasitas pembawa informasi dari kabel serat optik secara signifikan lebih besar daripada yang disediakan oleh metode konvensional dengan sepasang kabel individual. Selain itu, ukuran kabel berkurang, kabel lebih murah, crosstalk karena efek elektromagnetik antara konduktor pembawa arus dihilangkan, dan noise pickup akibat gangguan eksternal seperti petir dihilangkan. Industri serat optik didasarkan pada fakta bahwa informasi dapat ditransmisikan pada seberkas cahaya. Padahal kecepatan cahaya melalui ruang bebas adalah 3 x 10^8 meter per detik. Pada Gambar 7.68 , elemen dasar kabel serat optik terdefinisikan. Inti kaca atau plastik kabel bisa sekecil 8 mm, yang mendekati 1/10 diameter rambut manusia. Inti dikelilingi oleh lapisan luar yang disebut kelongsong, yang juga terbuat dari kaca atau plastik, tetapi memiliki indeks bias yang berbeda untuk memastikan cahaya di inti yang mengenai permukaan luar inti dipantulkan kembali ke inti. Lapisan pelindung kemudian ditambahkan untuk melindungi dua lapisan dari efek lingkungan luar.
Komponen dasar sistem komunikasi optik ditunjukkan pada Gambar 7.69. Itu sinyal input diterapkan ke modulator cahaya yang tujuan utamanya adalah untuk mengubah sinyal input
ke salah satu tingkat intensitas cahaya yang sesuai untuk diarahkan ke panjang serat optik
kabel. Informasi tersebut kemudian dibawa melalui kabel ke stasiun penerima, di mana a demodulator cahaya mengubah intensitas cahaya yang bervariasi kembali ke level voltase yang cocok yang berasal dari sinyal asli.
Arus untuk fotodioda adalah arus balik arah yang ditunjukkan pada Gambar 7.70a, tetapi dalam ekuivalen ac fotodioda dan resistor R sejajar seperti yang ditunjukkan pada Gambar 7.70b , membentuk sinyal yang diinginkan dengan polaritas ditampilkan di gerbang JFET. Kapasitor C hanyalah rangkaian terbuka ke dc untuk mengisolasi pengaturan bias untuk fotodioda dari JFET dan hubung singkat seperti yang ditunjukkan sinyal vs . Sinyal yang masuk kemudian akan diperkuat dan akan muncul di saluran pembuangan terminal keluaran JFET.
Driver Relay MOSFET
Driver relay MOSFET yang akan dijelaskan di bagian ini adalah contoh yang sangat baik tentang bagaimana FET dapat digunakan untuk menggerakkan jaringan arus tinggi/tegangan tinggi tanpa menarik arus atau daya dari sirkuit penggerak. Impedansi input FET yang tinggi pada dasarnya mengisolasi dua bagian jaringan tanpa memerlukan hubungan optik atau elektromagnetik. Jaringan yang akan dijelaskan dapat digunakan untuk berbagai aplikasi, tetapi aplikasi kita akan terbatas pada sistem alarm yang diaktifkan ketika seseorang atau sesuatu melewati bidang cahaya yang ditransmisikan. LED IR (inframerah—tidak terlihat) pada Gambar 7.71 mengarahkan cahayanya melalui corong pengarah untuk mengenai permukaan sel fotokonduktif (Bagian 16.7) jaringan pengendali.
5. Percobaan[Back]
a) Prosedur[kembali]
- Percobaan
- Siapkan segala komponen yang di butuhkan
- Susun rangkaian sesuai panduan
- Sambungkan rangkaian dengan baterai untuk sumber tenaga
- Hidupkan rangkaian
- Apabila tidak terjadi eror, maka rangkaian selesai dibuat.
- Gambar Rangkaian
1). Rangkaian 7.65(a)
2). Rangkaian 7.65 (b)
6. File Download[Back]
Rangkaian 1 (klik disini)
Rangkaian 2 (klik disini)
Rangkaian 3 (klik disini)
Rangkaian 4 (klik disini)
Komentar
Posting Komentar